Categories
Health

Facebook posts better at predicting diabetes, mental health than demographic data

Scientists analyzed the entire Facebook post of nearly 1k patients, who have their electronic medical record data linked to their profiles.

Washington: Language in Facebook posts may help identify conditions such as diabetes, anxiety, depression and psychosis in patients, according to a study. It’s believed that language in posts could be indicators of disease and, with patient consent, could be monitored just like physical symptoms.

Using an automated data collection technique, the researchers from the University of Pennsylvania and Stony Brook University in the US analyzed the entire Facebook post history of nearly 1,000 patients who agreed to have their electronic medical record data linked to their profiles.

The researchers then built three models to analyze their predictive power for the patients: one model only analyzing the Facebook post language, another that used demographics such as age and sex, and the last that combined the two datasets.

Looking into 21 different conditions, researchers found that all 21 were predictable from Facebook alone. In fact, 10 of the conditions were better predicted through the use of Facebook data instead of demographic information.

“This work is early, but our hope is that the insights gleaned from these posts could be used to better inform patients and providers about their health,” said Raina Merchant, an associate professor at the University of Pennsylvania.

“As social media posts are often about someone’s lifestyle choices and experiences or how they’re feeling this information could provide additional information about disease management and exacerbation,” Merchant said.

Some of the Facebook data that was found to be more predictive than demographic data seemed intuitive.

For example, “drink” and “bottle” were shown to be more predictive of alcohol abuse. However, others were not as easy.

For example, the people that most often mentioned religious language like “God” or “pray” in their posts were 15 times more likely to have diabetes than those who used these terms the least.

Additionally, words expressing hostility — like “dumb” and some expletives — served as indicators of drug abuse and psychoses.

“Our digital language captures powerful aspects of our lives that are likely quite different from what is captured through traditional medical data,” said Andrew Schwartz, an assistant professor at Stony Brook University.

“Many studies have now shown a link between language patterns and a specific disease, such as language predictive of depression or language that gives insights into whether someone is living with cancer,” said Schwartz.

“However, by looking across many medical conditions, we get a view of how conditions relate to each other, which can enable new applications of AI for medicine,” he said.

Last year, many members of this research team were able to show that the analysis of Facebook posts could predict a diagnosis of depression as much as three months earlier than a diagnosis in the clinic.

This work builds on the study and shows that there may be potential for developing an opt-in system for patients that could analyze their social media posts and provide extra information for clinicians to refine care delivery.

One reply on “Facebook posts better at predicting diabetes, mental health than demographic data”

I was diabetic for 18 years and was taking metformin 1000 mg twice daily. Last A1C was 7.5. My symptoms have always been stomach and bowels. I am a 56 year old male. the metformin wasn’t really working so this year, our family doctor started me on Rich Herbal Gardens Diabetes Herbal Protocol, With the help of Rich Herbal Garden organic and rich herbs I have been able to reverse my symptoms using herbs, my symptoms totally declined over a 16 weeks use of the Natural Herbal Gardens Diabetes Herbal Formula. My diabetes is totally reversed! Visit their website www . richherbalgardens . com I am thankful to nature

Leave a Reply